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Personalized ML-based wearable robot
control improves impaired arm function

James Arnold1,5, Prabhat Pathak1,5, Yichu Jin 1, David Pont-Esteban1,
ConnorM. McCann 1, Carolin Lehmacher1, John P. Bonadonna1, Tanguy Lewko1,
Katherine M. Burke 2, Sarah Cavanagh 1,3,4, Lynn Blaney3, Kelly Rishe 3,4,
Tazzy Cole1, Sabrina Paganoni2, David Lin3,4 & Conor J. Walsh 1

Portable wearable robots offer promise for assisting people with upper limb
disabilities. However, movement variability between individuals and trade-offs
between supportiveness and transparency complicate robot control during
real-world tasks. We address these challenges by first developing a persona-
lized ML intention detection model to decode user’s motion intention from
IMU and compression sensors. Second, we leverage a physics-based hysteresis
model to enhance control transparency and adapt it for practical use in real-
world tasks. Third,wecombine and integrate these twomodels into a real-time
controller to modulate the assistance level based on the user’s intention and
kinematic state. Fourth,we evaluate the effectiveness of our control strategy in
improving arm function in amulti-day evaluation. For 5 individuals post-stroke
and 4 living with ALS wearing a soft shoulder robot, we demonstrate that the
controller identifies shoulder movement with 94.2% accuracy from minimal
change in the shoulder angles (elevation: 3.4°, depression: 1.7°) and reduces
arm-lowering force by 31.9% compared to a baseline controller. Furthermore,
the robot improves movement quality by increasing their shoulder elevation/
depression (17.5°), elbow (10.6°) and wrist flexion/extension (7.6°) ROMs;
reducing trunk compensation (up to 25.4%); and improving hand-path effi-
ciency (up to 53.8%).

Upper limb motor impairment, either due to injury such as stroke or
neurodegenerative diseases such as amyotrophic lateral sclerosis
(ALS), impedes functional use of the arm in daily life. Recently, a
number of portable, wearable robots have beendeveloped to augment
the residual movement of individuals with upper limb impairments1–3.
Our grouppreviously presented an inflatable, wearable shoulder robot
with a controller that used inertial measurement unit (IMU)-estimated
joint angles and velocities to dynamically assist upper limbmovements
by offloading the weight of the arm3.We chose to offload the weight of
the arm around the shoulder, the largest torque-bearing upper limb

joint, since gravity offloading is known to decrease the burden on the
damaged nervous system, thereby reducing abnormal jointmovement
and leading to improvement in functional tasks4–6. However, high
inter-individual variability in residual movement7 creates a challenge
for effectivewearable robot control, especially during functional tasks.

For intuitive control of a wearable robot, accurate detection of
motion intention is critical. Prior work has considered a number of
non-invasive, privacy-preserving, and automated approaches to
detecting auser’s intention. Surface electromyography (sEMG) sensors
are the most common sensing modality for intention recognition in
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both wearable robots8 and robotic prostheses9. The sEMG sensors are
used due to their utility in detecting anticipatory movement
intention10, as electrical activity in the muscles precedes joint move-
ment, potentially reducing the latency between the detection of
movement intention and the application of assistive forces. Early work
in intention detection11,12 focused on low-latency EMG decoding for
prosthetic control but did not integrate decoding with actuation.
Recentwork has advancedevaluationof intentiondetectionmodels by
testing models within target systems13 and evaluating sEMG perfor-
mance across multiple days14. However, the sEMG sensors used in
these prior works have practical challenges such as requiring precise
placement on the skin, maintaining a stable skin-electrode interface,
and lacking robustness to sweat. For example, the MyoPro powered
elbow and hand orthosis from Myomo uses sEMG for control but
requires a trained professional for the initial placement of sEMG
electrodes and tuning sEMGonset thresholds15. These limitations pose
practical challenges for a personwith upper limb impairments to use a
wearable robot independently and across days.

Alternative wearable sensors that could potentially mitigate the
usability challenges associated with sEMG are IMUs and force/com-
pression sensors. IMU-estimated kinematic information has been used
to decode intention from usermotion, primarily through thresholding
and proportional or functional mapping of joint angles or velocities to
output actuation16–18. In addition, force sensors that monitor the loads
exerted on the body have also been explored, though primarily for
non-portable and/or rigid upper limb devices or hand devices19–21.

A wearable robot controller also requires a model of the rela-
tionship between the commanded actuation and its effect on the
human-robot system. Modeling this relationship is often non-trivial,
since this relationship is typically hysteretic3,22 because of textile
components common in wearable robots. Model inaccuracies can
make a robot ineffective or unusable for impaired users who cannot
easily compensate for over-/under-assistance. Recently, our group
introduced a practical hysteresis modeling approach that can be per-
sonalized to each user of wearable robots23. This model was shown to
minimize the potential for applying incorrect levels of assistance
compared to more commonly used, simpler curve-fitting models.
However, this model has yet to be integrated into any closed loop
controller, and its effectiveness for assisting those with upper limb
impairments has not yet been tested.

Past studies of wearable robots for individuals with upper limb
impairments have focused on evaluating the reduction in muscle
activity24, range of motion of at least one joint1, or changes in clinical
scores25. In a recent study with our soft wearable shoulder robot3, we
presented an evaluation approach that used tasks ranging from single
joint movements to functional tasks requiring arm elevation to assess
changes in themovement quality of the shoulder and trunkusing a soft
wearable robot.Whilewe assessed changes in themovement quality of
the shoulder and trunk during lifting, we did not evaluate changes in
the distal joint and hand movement quality over the full range of arm
movement, i.e., lifting and lowering. This is important as previous
studies have emphasized that an adequate level of movement quality
for all the joints in the upper limbkinematic chain over the full range of
gross arm movement is necessary to effectively perform functional
tasks26,27.

The objective of this research is to develop an intention-based
control strategy for an inflatable soft wearable robot to assist the
shoulder of individuals with various upper limb impairments. We
achieve this by first developing a machine learning (ML) intention
detectionmodel to infer armmotion fromkinematic andhuman-robot
interaction information captured using IMUs and custom soft com-
pression sensors, respectively. Second, we introduce a method that
leverages the human-robot system’s inherent hysteresis using a
physics-based model to estimate the minimum pressure needed to
support the arm and ensure transparency during lowering. Third, we

present a real-time control approach that combines the intention
detection and physics-based hysteresis models that can run onboard
the portable robot to adaptively control the assistance level based on
the user’s motion intention and kinematic state. Finally, we evaluate
the controller’s effectiveness in improving overall arm function
through previously unseen tasks involving isolated and functional
movements in individuals post-stroke and with ALS, through in-lab
assessment and at-home demonstration.

Results
Overview of soft wearable robot and control strategy
To support the impaired shoulder movement of individuals post-
stroke and living with ALS, we advanced the sensing capabilities of a
soft wearable robot that provides support with an inflatable actuator
under their impaired arm (Fig. 1A). Specifically, in addition to using
inertial measurement units, we integrated custom soft compression
sensorswhose combined data could be used as control inputs to sense
the participants’ residual movement (Fig. 1B). The custom compres-
sion sensors are textile-based soft capacitors that measure changes in
sensor thickness during human-robot interaction, which correlate to
the compression force applied to the sensor (Supplementary Fig. S1).

Trained from guided sessions (Fig. 1C, Supplementary Table S1)
requiring on average 17:04 ± 3:26 (minutes:seconds) to perform, per-
sonalized intention detection models (IDMs) could classify the inten-
ded direction of shoulder movement–UP, DOWN, or HOLD–for 5
individuals post-stroke and 4 individuals living with ALS. For each
participant, the IDM was combined with a physics-based model which
captured the hysteretic mapping from the shoulder elevation angle to
the actuator pressure necessary for anti-gravity support. Specifically,
the IDM classifications were used to offset input angles to the hyster-
esis model to rapidly promote shoulder elevation/depression move-
ment or gradually approach the estimatedminimumnecessary level of
support to maintain a constant shoulder elevation. We modeled this
hysteresis with a Preisach model23 (Supplementary Fig. S2) based on
data from three cyclical inflation/deflation cycles of decreasing mag-
nitude (Fig. 1D) while the participant was instructed to keep their
arm limp.

Development and evaluation of personalized motion intention
detection models
Weevaluated the IDMaccuracyduring an evaluation sessionwhere the
IDM real-time predictions (100Hz)were used for the robot’s control as
participants performed joint individuation (n = 9) and simulated
functional tasks (n = 8, excluding one participant living with ALS who
could not complete the tasks due to fatigue). We evaluated the UP/
DOWN classes during cued shoulder lifting/lowering movements and
theHOLD class during other cuedmovementswhere participants were
instructed tomaintain steady shoulder elevation (Fig. 2A).We chose to
evaluate the HOLD class only during simultaneous volitional move-
ment since, compared to static holding, this scenario is more chal-
lenging to classify and more akin to functional use.

Accuracy was defined according to a comparison of the real-time
IDM predictions and the ground truth intention labels assigned from
the movement cues. Specifically, we defined correctly classified
movements as those where the plurality of real-time IDM class pre-
dictions was correct (Supplementary Fig. S3A). This way, we could
separate between movements that were predominately classified
correctly versus those with longer periods of misclassified timesteps
which have a greater impact on the control. However, movements
designated as misclassified can still contain periods of time where the
real-time IDM predictions are correct. In fact, across all participants
and tasks, the participants’ intention was identified for a sufficient
period of time to trigger actuation.

We found that, on average, the accuracy of the IDMs was
94.2 ± 2.0% across the nine participants, corresponding to 93.6 ± 9.1%,
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93.0 ± 6.4%, and 96.1 ± 4.3% for UP, HOLD, and DOWN, respectively
(Fig. 2B). In the context of the IDMs’use for robot control,misclassified
movements manifested as either delayed or discontinuous actuation
for UP and DOWN or perturbations in the robot-provided support
during HOLD. The specific effects of IDM misclassifications are pre-
sented in the subsequent section on the integrated controller.

To assess the quality of the accuracy results, we compared this
group accuracy (where each participant’s evaluation data was clas-
sified by their own personalized model) to accuracies found in post-
processing (where all participants’ evaluation data were classified by
all other models and a generalized model trained from all partici-
pants’ data). We found that having a personalized IDM for each
participant enabled the highest accuracy across the group, least
misclassifications, and lowest standard deviation among inter-
participant accuracies (Supplementary Table S2). A generalized
IDM (trained on all participants’ data) achieved an accuracy of
87.2 ± 5.8% which was 7.5% lower than the group accuracy for per-
sonalized IDMs.

Furthermore, we assessed the personalized IDMs’ responsiveness
in terms of time and angle to the first identification of UP and DOWN
intention (Fig. 2E). We found that the time until the first correct pre-
diction of UP and DOWN was 218 ± 206ms and 178 ± 123ms, respec-
tively, from the video labeled initiation time. These times correspond
to small changes in shoulder elevation (estimated from optical motion
capture) before intention was first predicted by the IDMs: 3.4 ± 2.0°
shoulder elevation and 1.7 ± 2.2° shoulder depression for UP and
DOWN, respectively. Given that the average change in shoulder ele-
vation was 11.5 ± 4.4° within each cued HOLD movement, the small
displacements required to trigger UP/DOWN predictions imply the
IDMs could reliably distinguish between wearable sensor signal chan-
ges caused by voluntary changes in shoulder elevation as compared to
changes caused by involuntary movements.

Controlling the robot with user intention detection models
Supplementary Fig. S4 shows the robot controller thatwas designed to
enable real-time assistance and transparent user-directed movement.

Capacitive
Compression
Sensors

Inside Shirt

Fig. 1 | Overview of the soft wearable robot and high-level control strategy.
A The components of the soft wearable robot that provides shoulder assistance
using an inflatable actuator. The robot has integrated IMUs and soft compression
sensors. All the electronics, valves, fluidic supply, and batteries used to power and
control the robot are housed in a portable actuation box that can be worn at the
waist or positioned beside the user. B Real-time controller designed to augment
residual motion by combining a personalized intention detectionmodel (IDM) and
hysteresis model. Wearable sensors captured residual armmovements which were
classified by the IDM. The real-time intention classification determined the target

elevation angle, and the hysteresis model determined the pressure necessary to
achieve this target angle. C IDM training data collection overview (performed only
once per participant and not re-trained for subsequent days). Participants were
instructed to perform a variety of upper limb movements to collect IMU and
compression sensor data labeled based on the instructed shoulder elevation: lifting
the arm (UP), maintaining the arm elevation (HOLD), and lowering the arm
(DOWN). D Hysteresis model calibration procedure (performed each time the
robot is donned). Each participant was instructed to keep their arm limp while the
actuator swept the pressure.
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Rather than always querying the human-robot hysteresismodel to find
the necessary pressure to support the gravitational load of the arm in
its current pose (i.e., pure gravity compensation), the controller pre-
dicted the pressure required for future states based on the IDM-
predicted direction of intention (Fig. 3A). In the UP and DOWN states,
the measured elevation angle was (optionally) offset by a constant
angle in the direction of movement, allowing the robot to anticipate
and promote a user’s future movement in that direction. In the HOLD
state, the controller’s objective was to maintain antigravity support
whilemaximizing the transparency of the system (i.e., at theminimum
actuator pressure). Given the typical shape of the hysteretic curves for
our system, the actuator pressure could be reduced significantly in the
HOLD state while still maintaining support of the arm (Fig. 3A,middle).
Animations of the controller response time synchronized with videos
of participants performing functional and joint individuation tasks are
presented in Supplementary Movie 1.

We evaluated the actuator pressure response to assess how
reactive the controller was when a user intended to change their
shoulder elevation. These times to actuation include the contributions
of the IDM, hysteresis model, low level pressure controller, and fluid
dynamics. Across all UP movements, the average time and shoulder

elevation angle until measured actuator inflation due to a UP intention
model prediction was 498 ± 150ms and 13.0 ± 4.2°, respectively
(Fig. 3C, left). Across all DOWN movements, the average time and
shoulder depression angle until measured actuator deflation due to a
DOWN intention model prediction was 378 ± 115ms and 6.7 ± 5.3°,
respectively (Fig. 3C, right). IDM UP/DOWN misclassifications mani-
fested asdelayed actuation, withUP andDOWNmisclassification times
to actuation of 1024 ± 1030ms and 569 ± 586ms, respectively.

We validated the hysteresis model’s ability to predict the mini-
mum necessary pressure during HOLD by evaluating the change in
angle during the steady elevation at 90° portion of the isolated
shoulder flexion and abduction tasks (n = 9). A representative figure of
the controller response during the isolated shoulder abduction task is
shown in Fig. 3B. During the period when participants were instructed
to keep their shoulder elevated, the actuator pressure dropped by
16.7 ± 10.4 kPa (16.1 ± 10.0% of the range of possible commanded
pressure) on average across the 9 participants. However, the shoulder
depressed, on average, by only 1.7 ± 1.9°, demonstrating that the
actuator maintained support of the arm. The high standard deviation
of pressure dropped is reflective of the user-specific hysteresis cali-
brations. Depending on the fit of the shirt and armweight, the shape of

Fig. 2 | Evaluation of intention detection models on unseen movement data.
A The cued movements participants performed to evaluate their personalized
IDMs. This evaluation was performed on a separate day from the IDM training to
demonstrate that the personalized IDMs do not need to be re-trained each time the
robot is donned. B IDM accuracy/confusion for the nine participants across the
movements (for one participant, functional tasks were excluded). Each colored bar

represents the mean percentage of movements predicted to be a particular class
(±standard deviation), grouped by the correct class. Overlaid points show indivi-
dual participant data. C Top: Representative sensor data showing IMU-estimated
elevation angle (pink, left y-axis) and average change in compression (gold, right y-
axis). Bottom: IDM real-time predictions from one participant during the shoulder
elevated horizontal abduction/adduction task.
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Fig. 3 | Control objectives and real-time controller performance. A Control
objectives during the three intention states. Arrows show the commandedpressure
trajectory from the initial (white circle) to target state (colored circle) based on the
predicted intention and hysteresis calibration (gray). B Example shoulder abduc-
tion/adduction response. Left: time series of shoulder elevation (pink), mean
compression change (gold), IDM-predicted intention (diamonds), ground truth
(black), and actuator pressure (measured, purple; commanded, dashed black).
Right: elevation vs. commanded pressure, colored by intention. C Responsiveness

results across participants (n = 9). D Representative time series (n = 1 participant
post-stroke, left) and group (n = 8, right) results showing the differences in force
(estimated from compression sensors), actuator air pressure, and shoulder eleva-
tion between baseline gravity compensation control and multimodal ML control
during shoulder extension and adduction. Two-tailed paired t-tests or Wilcoxon
signed-rank tests assessed statistical significance; lines and error bars indicate
means ± standard errors.
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the deflation curves was different and allowed for a different level of
pressure drop to maintain support. The minimum necessary pressure
response was also observed during functional tasks (Supplemen-
tary Fig. S5).

IDM misclassifications during HOLD–78.9% of which occurred
during shoulder elevated internal/external rotation–manifested as
perturbations in the applied pressure. Across participants’ mis-
classified HOLD movements, an average 5.9 ± 9.2° decrease and
6.7 ± 10.3° increase in elevation angle were measured during move-
ments misclassified as DOWN and UP, respectively. Despite these
misclassification-induced perturbations, the robot was observed to
have a stabilizing effect on the user’s shoulder elevation even during
misclassifications, and the controller addressed misclassifications by
slowly inflating or deflating back to the estimated minimum pressure
required for support (Supplementary Fig. S6).

We evaluated the controller’s ability to enable transparent arm
lowering by comparing our proposed multimodal ML controller to a
baseline controller that performs pure kinematic-based gravity
compensation23 with the user-specific hysteresis model (i.e., there is
no intention information incorporated from an IDM in the baseline
controller). A representative comparison of these conditions during
one repetition of isolated shoulder flexion/extension is shown in
Fig. 3D. There was a notable reduction in the amount of force
required for the participants to lower their arms when using the
multimodal ML controller. From the compression sensor on the
torso, we estimate that the multimodal ML controller reduced the
peak lowering force during DOWN by 19.4 ± 3.3 N (−31.9 ± 2.6%,
p = 0.008) across 8 participants (Supplementary Fig. S1). Also, the
peak measured actuator pressure during DOWN was 27.0 ± 3.8 kPa
(−27.8 ± 3.2%, p = 1.82×10−4) lower despite there being no significant
difference in initial angle estimated by the IMUs at the start of
DOWN. One participant living with ALS was excluded from this ana-
lysis since they were only able to perform the task with the multi-
modal ML controller and could not trigger inflation with the baseline
controller during the evaluation session.

Improvement in upper limb function and movement quality
Weevaluated the efficacy of the soft wearable robotwith the proposed
controller in improving the upper limb movement quality for 9 parti-
cipants (5 individuals post-stroke and 4 living with ALS) during joint
individuation and for 8 participants during functional tasks (See
“Experimental procedure for evaluation”). The characteristics of the
participants are provided in Table 1.We calculated the range ofmotion
of the shoulder, elbow, and wrist joints to evaluate joint function.
Additionally, we calculated three-dimensional (3D) trunk center of
mass (COM) displacement to evaluate trunk compensation, and cal-
culated hand-path-ratio (HPR) and spectral arc length (SPARC) of 3D
hand COM trajectory to evaluate hand path efficiency and smoothness
(See “Upper limb Movement Quality”). We also evaluated the effect of

the robot on the upper limb movement quality metrics separately for
the two participant subgroups based on the cause of impairment
(Stroke and ALS) and compared robot-induced changes in movement
quality for the two groups (See “Upper limb Movement Quality”). The
soft wearable robot improved joint function, decreased trunk com-
pensation, and increased hand path efficiency across 9 participants
during individuation and across 8 participants during functional tasks.

The robot significantly increased shoulder elevation/depression
ROM (+17.5 ± 4.6°,p = 0.004), elbow (+10.6 ± 2.4°,p =0.002), andwrist
(+7.6 ± 2.8°, p =0.026) flexion/extension ROM during individuation
tasks (Fig. 4A). However, the robot did not yield significant differences
in shoulder horizontal abduction/adduction and internal/external
rotation, and forearm supination/pronation ROMs during individua-
tion tasks (Supplementary Table S7). The robot also significantly
reduced trunk compensation by decreasing trunk COM displacement
only during DOWN direction movement for the individuation task
(−25.4 ± 6.2%, p =0.009). In addition, the trunk COM displacement
significantly decreased during both movement directions for the
functional task (UP: −11.9 ± 3.9%, p =0.014; DOWN: −12.9 ± 4.6%,
p =0.016) (Fig. 4B). Finally, the robot improved hand movement effi-
ciency by significantly decreasing HPR for both individuation (UP:
−43.1 ± 8.4%, p = 0.019; DOWN: −53.8 ± 10.2%, p =0.018) and functional
(UP: −22.2 ± 3.6%, p = 0.008; DOWN: −22.1 ± 2.6%, p =0.008) tasks
(Fig. 4C). However, the robot did not yield significant changes in
smoothness (Supplementary Table S7).

A comparison of robot-induced improvement in movement
quality between participant subgroups revealed that the improve-
ments in joint function were significantly higher for individuals living
with ALS than post-stroke. Combining the tasks where the ROM sig-
nificantly increased across the 9 participants, we found that while the
robot significantly increased these ROMs for the Stroke (+6.4 ± 1.1°,
p = 5.80 × 10−5) and ALS (+18.8 ± 3.5°, p = 2.55 × 10−4) subgroups, the
magnitude of improvement was significantly larger for ALS than the
magnitude for Stroke (p = 0.005) (Fig. 4D). Performing this subgroup-
separate analysis for tasks where ROM did not significantly change
across the 9 participants, we found that the robot significantly
increased the ROMs only for the ALS subgroup (+9.9 ± 2.7°,
p = 4.88×10−4), and the magnitude of improvement was significantly
larger for ALS than magnitude for Stroke (p = 4.28 × 10−5). Lastly,
combining the values of trunk compensation and hand movement
related metrics for individuation and functional tasks, we found that
the robot significantly reduced trunk COM displacement (Stroke:
−12.6 ± 3.0%, p = 1.05 × 10−4; ALS: −18.6 ± 6.0%, p =0.005) and HPR
(Stroke: −29.0 ± 4.8%, p = 3.62 × 10−5; ALS: −46.2 ± 6.9%, p = 1.22 × 10−4)
separately for each subgroup (Fig. 4E). However, no significant dif-
ferences were observed in percent improvement in these metrics
between the two subgroups, indicating that the robot provides similar
benefit in reducing trunk compensation and hand path efficiency for
the ALS and Stroke subgroups.

Table 1 | Participant cohort

Participant Cause of impairment Shoulder supported Sex Dominant arm Shirt size Clinical score

P1 Stroke L M R L FMA-UE: 35/60

P2 Stroke L M L XL FMA-UE: 31/60

P3 Stroke L M R XL FMA-UE: 55/60

P4 Stroke L M L M FMA-UE: 31/60

P5 Stroke L M R L FMA-UE: 53/60

P6 ALS L F R L ALSFRS-R: 33/48

P7 ALS R F R S ALSFRS-R: 37/48

P8 ALS R F R XL ALSFRS-R: 35/48

P9 ALS L F R L ALSFRS-R: 43/48

Upper Limb Fugl-Meyer Assessment (FMA-UE) out of 60 (motor function subscore without reflexes) and Revised ALS Functional Rating Scale (ALSFRS-R) out of 48.

Article https://doi.org/10.1038/s41467-025-62538-8

Nature Communications |         (2025) 16:7091 6

www.nature.com/naturecommunications


At-home demonstration
We evaluated the robot’s performance in real-world, at-home settings
to better understand its effectiveness during prolonged daily use and
while interacting with weighted objects. To do this, we brought the
robot to the homes of one participant post-stroke and one living with
ALS, where they performed shoulder elevated, weight-holding tasks
and activities of daily living (ADLs). Both participants held weights

higher and longer with the multimodal ML controller enabled (Sup-
plementary Fig. S8). At the elevated postures following abduction and
flexion, shoulder elevation increased by 43.5 ± 13.0% and 53.5 ± 10.3%
(Stroke) and by 33.7 ± 6.8% and 9.4 ± 5.8% (ALS), respectively. Task
duration increased by 179.5% and 66.1% (Stroke) and by 65.7% and
30.7% (ALS), respectively. For the ADLs, we assessed controller per-
formance before and after prolonged use involving repetitive joint

Fig. 4 | Improved upper limb function andmovement quality withmultimodal
ML control of the soft wearable robot. A Representative illustration, and the
results of the comparison of shoulder elevation/depression, and elbow and wrist
flexion/extension range ofmotions (ROMs) during individuation (n = 9) tasksunder
two conditions: robot turned off (OFF; gray shaded region and line with error bars)
and turned on (ON; purple shaded region and line with error bars).
B Representative illustration and results of comparisons of the three-dimensional
(3D) trunk center of mass (COM) displacement during individuation (n = 9) and
functional tasks (n = 8) under OFF and ON conditions. C Representative illustration
of 3D hand COM trajectory and results of comparison of mean hand-path-ratio
(HPR) during individuation tasks and functional tasks under OFF and ON condi-
tions. In A–C, two-tailed paired t-test or Wilcoxon-signed rank tests were used to
evaluate significant differences in all the movement quality metrics between ON

and OFF, and the line and error bars are the mean and standard error. D The
comparison of significantly improved ROMs and not significantly different ROMs
between the two participant groups, individuals post-stroke (n = 5) and living with
ALS (n = 4), and separately between ON and OFF for each group. E The comparison
of trunk COM displacement and HPR between two participant groups and sepa-
rately between ON and OFF for each group. In (D, E), significant differences in
movement quality between the groupswereperformed using independent t-test or
Mann–Whitney U tests, and between ON and OFF were performed using two-tailed
paired t-test orWilcoxon-signed rank tests. The purple line and error bars in (D and
E) are the mean and standard error of the improvements compared to OFF con-
dition. Overlaid points show individual participant data. ***(p <0.001), **(p <0.01)
and *(p <0.05) denotes statistically significant difference.
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movement and weight-holding and found that the robot provided
dynamic assistance throughout ADLs in all cases (Supplementary
Fig. S9). However, we observed reduced mean pressure of support
following self-reported fatigue in the ALS participant, highlighting a
potential direction for future work on fatigue-adaptive control. Sup-
plementary Movie 2 compiles videos of participants performing tasks
with and without the assistance provided by the robot with the mul-
timodal ML controller during the in-lab assessment and at-home
demonstration.

Discussion
Aswearable robots for those with upper limb impairments continue to
become more portable and suitable for integration into unstructured
environments, intuitive and reliable control will be critical for enabling
functional arm use. Toward this goal, we developed and evaluated the
effect of a control strategy that combines models of the human user’s
intention and human-robot hysteresis to control a soft inflatable
shoulder robot in individuals with diverse types of upper limb motor
impairments. We demonstrated that an ML model that uses a light-
weight neural network could be trained from a short, guided session
and then run in real-time to classify a user’s intended shoulder eleva-
tion/depression. Furthermore, we showed that combining detected
intention with a model of human-robot hysteresis allowed the con-
troller to be both supportive and transparent. Finally, by systematically
tracking all the upper limb joints and segment movements, we were
able to demonstrate improvements in joint function and reductions in
compensations for tasks ranging from single joint movement to
functional activities.

A key innovation of our control strategy is leveraging persona-
lized IDMs that combine IMUs and customsoft compression sensors to
capture kinematics and human-robot interaction, respectively, to infer
arm motion. By purposefully evaluating the control strategy over
multiple days and on unseen tasks, we took into account the challenge
of sensor misalignment across days and pathological involuntary
movement not seen during the training of IDMs. Despite these chal-
lenges, we showed that the personalized IDMs identified the partici-
pants’ intended direction of shoulder elevation in real-time with a high
accuracy of 94.2 ± 2.0%. This compares to about 85% from sEMGonly28

and withmultimodal sensor inputs29 for handmovement classification
of individuals post-stroke. Additionally, another study2 used real-time
muscular activity of upper limb muscles to classify between static
holding and isolated shoulder and elbow flexion/extensionmovement
for healthy adults with an average accuracy of 96.2%. Due to the dif-
ferences in sensing modalities, detected movements, and/or study
participant population, directly comparing our accuracy with results
from existing literature is challenging. Still, unlike the single-degree of
freedom simplemotions detected in previous studies, we purposefully
evaluated our intention detection model during multi-degree of free-
dom, complex motions where misclassifications were more likely to
occur due to pathological involuntary movements and/or sensor
misalignment.

We further evaluated the controller in terms of its response time
to the users’ volitional shoulder elevation/depression movements.
We found that the IDMs took, on average, 218 ± 206ms and
178 ± 123ms to predict UP andDOWN intention, respectively. We also
found the time to actuation was 498 ± 150ms and 378 ± 115ms for UP
and DOWN, respectively. In prior works, the time to actuation has
been calculated from the time to record and process sensor data2,3,
but these estimates do not include the intention detection perfor-
mance or other potential sources of delay such as low-level con-
troller response and actuator dynamics. Both the sensing and
actuation methods we chose contribute to the overall actuation
delay. While participants did not report issues with latency, we did
not systematically assess user perception, which should be addres-
sed in future work. We selected sensors that do not require precise

placement or a stable skin interface and a lightweight, transparent
actuation method to support multi-day usability. While IMU and
force sensors have been shown to achieve comparable performance
to sEMG sensors for intention detection30, another study31 demon-
strated that sEMG sensors can offer faster detection than using
interaction force. Alternative actuation methods, such as cable-
driven or electromechanical systems, may further reduce latency
compared to pneumatic systems and could be implemented with
adaptations of the proposed control strategy.

Evaluated in prior work with clinical populations, mechanical
transparency for soft wearable robots has been quantified by whether
the robot restricts the users’ ROM when the robot is unpowered3,32.
However, the transparency when the robot is unpowered does not
account for the potential effects of the force applied by the robot on
the effort required by the user to move their joints. In this study, the
custom soft compression sensors enabled real-time control and an
assessment of this transparency. We combined the additional infor-
mation provided by modeling human intention with a physics-based
model that encapsulates the hysteresis of the inflatable actuator to
predict the minimum actuator pressure to hold the arm. Integrating
thesemodels into a real-time controller, wedemonstrated a significant
reduction in effort to lower the arm compared to a baseline gravity
compensation controller (31.9 ± 2.6% reduction in force). This result is
likely enabledbyboth the controller’s rapid deflation inDOWNand the
reduced actuator pressure predicted by the hysteresis model during
HOLD. Considering the improvements observed in joint function, this
reduction in effort to lower the arm suggests that the controller
maintains the robot’s supportiveness while also being transparent
when lowering the arm.

Our results andnewcontrol strategy canalsoprovide insights into
the potential assistive and rehabilitative applications of soft wearable
robots. Previous studies have shown that upper limb impairments
impede movement quality by reducing joint ROM, requiring greater
trunk compensation to move the hand in 3D space26,27,33. The effec-
tiveness of wearable and stationary in-clinic robots in reducing com-
pensatory movement during isolated joint movements and reaching
tasks has been demonstrated in the past studies34–36. In contrast, our
robot enabled participants to move their arm with reduced trunk
compensation during isolated joint movement and functional tasks
that simulated activities of daily living (Fig. 4C). This indicates that the
robot can curtail compensatory efforts to perform real-world func-
tional movements. Hence, our robot can be used as an assistive device
to enable prolonged arm use for users with upper limb impairments,
especially for individuals living with ALS, for whom our robot
improved the function of all upper limb joints in multiple degrees of
freedom (Fig. 4D). The reduction in trunk compensation also provides
evidence of the potential use of our robot as a rehabilitation tool for
individuals post-stroke since over-reliance on compensatory strategies
can limit motor recovery37.

In line with the rehabilitation approach of offloading the arm
weight to improve distal joint movements4, our robot increased elbow
and wrist ROM. The utility of our robot in improving joint function is
higher than previous studies1,24,38, who developed soft wearable
shoulder robots to reduce muscular effort without improving joint
function in individuals with upper limb impairments. Interestingly,
compared to results fromprior studies using elbow- andwrist-assisting
robots, our shoulder-assisting robot achieved comparable improve-
ments in elbow ROM and greater improvements in wrist ROM39–41.
Although similar results showing that offloading arm weight in
improving distal joint function have been demonstrated with in-clinic
rigid robots4, our robot offers a lightweight and portable solution to
assist self-initiated functional arm use. However, to confirm the reha-
bilitative benefits of our robot, larger-scale clinical trials and long-
itudinal at-home studies are needed. Specifically, adaptively using the
controller to tune the level of support (i.e., scale the output pressure
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predicted by the human-robot hysteresis model) to match motor
recovery can determine the robot’s utility as a rehabilitation tool.

Despite promising results, our proposed method and imple-
mentation have several limitations. First, our sensing and intention
detection strategy was designed for users with sufficient intact upper
limb joint function to perform movements for training the IDMs. We
therefore recruited individuals with mild to moderate levels of
impairment (Supplementary Method S3), since we hypothesized they
would benefit most from our control strategy. Future studies should
consider a larger sample size with more diverse levels of impairment,
whichmay require training the intentionmodelwith additional sensing
modalities, such as sEMG or EEG, to capture smaller residual function.
Second, our method focused on assisting only the shoulder joint;
however, individuals with severe impairments oftentimes have diffi-
culty using multiple joints. Future work could explore adding pneu-
matic actuators to directly assist the elbow,wrist, andhand,whichmay
offer faster actuation due to lower torque required to move the joints.
Third, the robot cannot be independently donned by individuals with
upper limb impairments. In the future, further advancement in design
is required to allow individuals with limited upper limb function to
wear and use independently to validate the utility of our robot for
independent use. Lastly, our control approach was not designed to
model interactions with weighted objects or the effects of fatigue.
While our at-home demonstration shows that the robot can allow
individuals with impairments to lift weighted objects higher and for
longer and that the robot can provide support in unconstrained ADLs,
we observed in one participant with ALS that the level of support
diminished post-fatigue. Modeling the effect of fatigue through
training data augmentation or dynamic adjustment of the controller’s
hyperparameters (e.g., the level of support) over time could be
explored in future studies.

We alsonote limitations in our evaluation. First, wewere unable to
quantify the accuracy of the IDMs during functional tasks beyond the
initial UP and final DOWN movements, as we could not directly
determine participants’ intent to perform subtle shoulder elevation
adjustments during fine object manipulation, such as repositioning a
toothbrush or comb, or rotating a spoon or bottle. This made it chal-
lenging to distinguish between intentional changes and involuntary,
impairment-induced movements. Our evaluation procedure aimed to
overcome this challenge by including the shoulder elevated joint
individuation tasks where we knew the users’ intention to HOLD
despite involuntary, impairment-induced movements. Second, we did
not perform a systematic evaluation of the effect of different levels of
accuracy for the IDMs, so we cannot quantify an exact threshold of
acceptable accuracy. We found that 94.2% ± 2.0% was acceptable for
achieving the improvements in upper limb movement quality and
enabling improved performance in functional tasks. Future work
evaluating the effect of accuracy on both users’movement quality and
perception would be valuable.

Our control strategy for a portable soft wearable robot shows
promise in fine-tuning the assistance to augment residual move-
ment for individuals with two different types of upper limb
impairments. We demonstrated that the new control strategy
robustly provides assistance after small changes in the shoulder
elevation/depression angle and short latency, while also improv-
ing transparency. In doing so, we showed it is possible to improve
upper limb movement quality, opening up new opportunities for
assistive technology to enhance performance during functional
tasks and increasing the dose, quality and intensity of movement
in upper limb motor rehabilitation.

Methods
High-level study design
We designed a multi-day study (2–3 days for each participant) to
evaluate the efficacy of our proposed multimodal ML control strategy

for a wearable shoulder robot that supports impaired upper limb
movements. The proposed robot controller combines 1) personalized
intention detection models (IDMs) that capture users’ intended
shoulder elevation direction and 2) a human-robot hysteresis model
that captures the state dependent relationship between a user’s arm
pose and the actuator air pressure required for support.

On the first day of the study, we trained IDMs for 5 individuals
post-stroke and 4 individuals living with ALS using robot-supported
upper limb movement data during a guided session. The IDMs were
trained to classify–in real-time–three directions of intended shoulder
elevation: 1) lifting the arm (UP), 2) maintaining the arm elevation
(HOLD), and 3) lowering the arm (DOWN). These three classes were
selected for their simplicity, alignment with our control strategy, and
demonstrated success in prior work30.

On the second day of the study, we evaluated the efficacy of the
trained IDMs in classifying the intended shoulder elevation direction
to actuate the robot in parallel with the users’ volitional movements.
We also evaluated the efficacy of the combined IDM and human-robot
hysteresis models on the robot’s controller performance and upper
limb movement quality. This evaluation was done by analyzing upper
limb movements that required each participant to lift and lower their
arm and perform joint movements while keeping their arm elevated,
with and without being supported by the soft wearable robot.

On the third day of the study, a subset of the participants (one
post-stroke and one livingwith ALS) completed evaluations at home to
assess the effects of prolonged use and interactions with weighted
objects in an unconstrained environment. Participants performed real
(not simulated) activities of daily living in their homes before and after
performing joint individuation and weight holding. The shoulder-
elevated weight holding was performed with and without robot
assistance.

Soft wearable robot hardware
The participants wore the soft wearable robot which our group
designed to assist the shoulder movement3. In brief, the robot uses a
textile-based, pneumatic actuator attached to a vest that can lift the
arm about the shoulder joint (see Supplementary S1 for more details).
All the electronics, valves, and an accumulator are housed inside a
portable box (3 kg) that can be worn by the participants. The portable
actuation box requires no external power supply or connection to a
computer.

Compared to our group’s previous work, wemodified the robot’s
hardware to improve both state estimation and controller bandwidth.
To enablemotion intention detection, we developed soft compression
sensors and integrated them into the shirt to capture the human-robot
interaction. Building on previous research42–44, these soft capacitive
sensors detect changes in applied pressure by measuring variations in
capacitance induced by compression in dielectric thickness (see Sup-
plementary S2 for more details). To improve controller bandwidth, we
reduced the pneumatic resistance introduced by proportional valves
(Polaris, IQ Valves) which connect from the accumulator to the infla-
table actuator by enabling input and output valves originally imple-
mented for bimanual arm support to be used in parallel for unimanual
support.

The IMUs and soft compression sensors streamed data to a
microcomputer within the portable actuation box (Beaglebone Black
Wireless, BeagleBoard.org Foundation) which is where the controller
computation was performed, pneumatic valves and pump were sent
commands, and controller data was logged. Hence, all controller
computation was performed within the portable actuation box, with
no external computer connection required. During in-lab evaluation,
the actuation box was wired to synchronize logged data with optical
motion capture and video. During at-home evaluation, the system was
fully untethered. Due to the computational overhead required for
performing the controller computation and the priority given to
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maintaining a consistent rate for the controller, we observed some
short periods of time where controller data was missing from the
output log file. In our analysis, these missing periods of time in the
controller were not imputed or interpolated and were instead exclu-
ded from the controller related analysis.

Participants
We recruited 9 individuals with upper limb impairments (5 individuals
post-stroke and 4 individuals living with ALS) to participate in the
study. All 9 participants performed the first two days of the study, and
2 performed the third day at-home. The demographic, anthropo-
metric, and functional level found from clinical assessment measures
for each participant are compiled in Table 1. The participant inclusion
and exclusion criteria are provided in Supplementary S3. One partici-
pant post-stroke and three participants living with ALS were wheel-
chair users and could not walk independently. All the aspects of the
study adhered to the guidelines described in the Declaration of Hel-
sinki and were approved by the institutional review board (IRB) of
Harvard Medical School (IRB No. 13-3418).

Experimental procedure to acquire data to train
personalized IDMs
We acquired training data during a guided session where we asked the
participants to perform a series of dynamic and quasistatic shoulder
elevation movements (Fig. 1C, Supplementary Table S1). These tasks
are described in detail in Supplementary S4. During the training, the
actuator supported the paretic (individuals post-stroke) orweaker arm
(individuals living with ALS).

Design of the intention detection models
Input data. Considering that we trained and evaluated the IDM on
separate days, we selected the input features for the IDMs that had
minimal effect due to changes in sensor placement caused by don-
ning/doffing the robot. Specifically, joint velocities and changes in
compression of the soft compression sensors attached to the human-
robot interaction surfaces were selected as input features for the IDM
since these signals captured residual movement while being mini-
mally sensitive to the sensors’ exact placement after redonning the
robot. In total, we selected six input signals to calculate the features
to train the IDMs: 1) shoulder elevation/depression velocity, 2)
shoulder horizontal abduction/adduction velocity, 3) elbow flexion/
extension velocity, 4) derivative of torso soft compression sensor
signal, 5) derivative of medial upper arm soft compression sensor
signal, and 6) derivative of lateral upper arm soft compression sensor
signal.

These signals were first smoothened by applying a short moving
average filter with a 20ms window. To minimize the effect of noise in
the sensor data and learn patterns from temporal trends, we included
data from the current timestep and acquired historical data from the
preceding 50ms (5 control iterations at 100Hz). In total, the IDMs
included 36 input features that were used to perform each inference:
the 6 current features and 5 × 6 historical features. This window size
and the number of features were selected to balance trade-offs related
to the sensitivity of the model to noise, the latency in performing the
inference, and the amount of training data required.

Model architecture. We chose the IDM architecture as a fully con-
nected neural network with two dense layers (20, 10 neurons) and
ReLU as the activation function. Regularization was applied to both
layers to prevent overfitting. Specifically, L1 regularization was used
with a regularization strength of 0.00001 to penalize large weights in
the neural network. A softmax layer was used to output confidence
thresholds for the predictions in the three classes (UP, HOLD, and
DOWN). The simple architecture for the model was selected based on
pilot testing, to ensure that sufficient patterns in data were captured

while keeping the time to perform inference sufficiently fast at every
control iteration to not cause delays in controller response.

Training. The training datawaswindowedwith a stride of 10ms so that
each window contained the 36 features that were input to the neural
network. 20% of the training windows (selected at random) were held
apart for validation during training. To address the imbalance present
in our training data (with windows labeled as HOLD being more
common than those labeled as UP or DOWN), we weighted the loss
function used during training by the ratio ofwindowswithin each class
present in each participant’s training data. To showcase the models’
generalizability across days–since retraining the IDM each time the
robot is worn is impractical–we trained the IDMs on a separate day
from when the model was evaluated as part of the multimodal ML
controller.

Real-time inference. After running the training for 30 epochs using
TensorFlow, the trained model was then deployed on the robot as a
TensorFlow Lite45 model using the Edge Impulse DSP and Inferencing
SDK46 which enabled the intention detection to run in real-time as the
participants moved. To smooth the predictions from the model and
avoid undesired frequent transitions between IDM classes, we applied
a short moving average filter with a window of 20ms to the output
confidence of each class. When the model was run in real-time, the
output confidences were used to classify the current intention state as
either UP, HOLD, or DOWN. UP/HOLD/DOWN Confidence Thresholds
were hyperparameters controlling the confidence levels required to
assign class labels at runtime. The order of precedence for assigning
class labels based on the Confidence Thresholds was DOWN, followed
by UP, and finally HOLD. If none of the confidence thresholds were
passed, the controller defaulted to the HOLD state.

Human-robot hysteresis model
To determine the actuator pressure that was necessary for support
while a user performed dynamic upper limb movement, we built on
our previous work23 modeling the hysteresis in the human-robot sys-
temwith a Preisachmodel. This hysteresismodel allowedus to capture
the relationship of the actuator air pressure required to support the
arm at a given shoulder elevation angle, which is specific to each
person. The variability within participants on separate days (Supple-
mentary Fig. S2) indicates that there was a need for performing this
calibration each time the robot was donned, unlike the IDMs which
were shown to generalize across days. We modified the model intro-
duced in our previous work23 to account for the impact of flexing the
elbow on torque required to support the shoulder. We have described
the details of this improved human-robot hysteresis model in S5.

Multimodal ML controller design
We combined the intention detection and hysteresis models to create
an integrated controller that enabled transparent gravity compensa-
tion control during HOLD, and tunable additional support during UP
and DOWN. Figure 3A illustrates the main principle for combining the
predictions from IDMs (UP,HOLD, orDOWN) andpredictions fromthe
hysteresis model for pressure required for gravity compensation.

In the UP and DOWN states, the estimated shoulder elevation
angle was offset by a constant angle, the UP/DOWN Angle Shift para-
meter, in the direction of movement. For example, if the DOWN Angle
Shift parameter were set to 5°, whenever the controller was in the
DOWN state, the robot would command the actuator pressure
required to support the current estimated elevation angle minus 5°. In
this way, the robot anticipated a user’s future movement and reacted
quickly whenever a person’s intention was to move in a particular
direction.

In the HOLD state, the controller’s objective was to maintain
gravity compensation support while maximizing the transparency of
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the system for future movements. To address the objective of main-
taining transparency, we used the hysteresis model to predict the
minimum necessary pressure to support the elevation angle ±1° when
the user first entered the HOLD state. The small tolerance on angle
(±1°) oftentimes allowed for significantly reduced pressure in the
HOLD state while still maintaining support of the arm, and by reducing
the pressure, the actuator was more transparent to future downward
movement. For example, if a user lifted their arm to 90° and then
stopped (entering theHOLD state), the actuatorwas allowed to reduce
the pressure so that the actuator provided the pressure to support 89°.
This small change in angle enabled significant reductions in the
actuator pressure (example in Supplementary Fig. S5). Additional
details about the minimum necessary pressure implementation are
described in Supplementary S6.

A diagram of the full controller architecture is shown in Supple-
mentary Fig. S4, which shows how the user’s residual movement is
measured by the wearable sensors, passed into the hysteresis model
and IDM, and the pressure in the actuator is set at each control itera-
tion by the low-level pneumatic controller described in Supplemen-
tary S7.

Experimental procedure for in-lab evaluation
After calibrating the human-robot hysteresis model and tuning the
personalized IDM to eachparticipant’s preference (see Supplementary
S8 for details and Supplementary Table S3 for each participant’s con-
troller hyperparameters), we evaluated the accuracy of the IDMs and
their effect on the robot’s real-time controller and upper limb move-
ment quality during two categories of tasks: 1) joint individuation and
2) functional tasks (Supplementary Fig. S7).

The joint individuation tasks consisted of isolated shoulder,
elbow, and wrist joint movements and forearm movements. Shoulder
joint movements were performed in all 3 degrees of freedom, while
only flexion/extension movements were performed for elbow and
wrist joints, and pronation/supination movement for the forearm.
Besides shoulder elevation/depression movements, the rest of the
movements were performed while keeping the arm elevated at a
steady 90°. We asked the participants to hold between the lifting (UP)
and lowering (DOWN) of the arm. For shoulder elevated joint move-
ments, we asked the participants to keep their arm elevated at 90°
(HOLD) and perform back-and-forth joint movements (3 repetitions),
while holding before changing the direction of movement (e.g., elbow
extension, hold, and then elbow flexion).

For functional tasks, we asked the participants to perform four
simulated activities of daily living (ADLs): brushing teeth, combing
hair, drinking, and eating. Specifically, we instructed the participants
to lift their arm, manipulate an object to simulate performing an ADL
(e.g. brushing teeth using a toothbrush), and lower their arm. The
participantswere asked to hold in placeafter completing amotion cue.
A single investigator guided eachparticipant’smovement by providing
instructions on when to initiate and terminate movements.

The participants performed all the tasks 3 times each under two
conditions: the robot turned on (ON) and off (OFF) in a randomized
order. Additionally, we asked participants to perform the shoulder
elevation movements with a baseline gravity compensation controller
to compare the effectiveness with the multimodal ML controller (see
Results). An optical motion capture system was used to record upper
limb movements by tracking the retro-reflective markers attached to
the key anatomical landmarks outlined in S9. The motion capture
system was time-synced with a camcorder to record videos that were
used to identify UP, DOWN, and HOLD intentions.

Controller evaluation. To assess the controller during the evaluation
on the secondday of the experiment, wecalculatedmetrics to quantify
the performance of both the IDMs and integrated controller. For the
IDMs, we evaluated their accuracy across movements, generalizability

across participants, and responsiveness to changes in intention. For
the integrated, multimodal ML controller, we evaluated the con-
troller’s responsiveness, response during IDM misclassifications, abil-
ity to estimate theminimumnecessary pressure, and the transparency
of the robot when lowering. We define these metrics in the Results
section and provide more detailed descriptions of their calculation in
Supplementary S10. Data analysis related to the controller response
was performed using Python version 3.10.12 and C++14.

Upper limb movement quality evaluation
We first filtered the raw positions of the retro-reflective markers
using a zero-lag, fourth-order low-pass Butterworth filter with a cut-
off frequency of 10Hz. Then, we built a four-segment (hand, forearm,
upper arm of the shoulder-supported side, and torso) using a bio-
mechanical modeling software, Visual 3D (Visual 3D v6TM, C-Motion,
Inc., Maryland, USA), to calculate kinematics metrics. All the move-
ment quality metrics calculation was performed in MATLAB (Version
R2024a)

Joint function. We evaluated the joint function by calculating the
shoulder elevation/depression, abduction/adduction, and internal/
external rotation; elbow and wrist flexion/extension; and forearm
supination/pronation ROMs.We selected ROMs as ametric to evaluate
upper limb movement quality because larger ROMs increase the
capacity to perform more ADLs, leading to greater functional inde-
pendence, and prevent contractures that could limit function and
increase pain47–50. These ROMs were calculated by taking the absolute
difference between the maximum and minimum values during the
upper limb joint movements.

Trunk compensation. We evaluated the trunk compensation by cal-
culating the 3D trunk center of mass (COM) displacement, separately
for UP and DOWN during isolated shoulder elevation of the indivi-
duation tasks and functional tasks.We selected trunk compensation as
a metric to evaluate upper limb movement quality because increased
reliance on trunk to move the hand leads to reduction in residual
capacity of upper limb joints, accelerating functional decline and
hampering motor recovery51–53. The 3D trunk COM displacement was
quantified as the sum of the time series magnitude of displacement of
the trunk in X (TrunkCOMx), Y (TrunkCOMy), and Z (TrunkCOMz) direc-
tions such that,

Trunkdisp =
Xk

n= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrunkCOMx ið Þ � TrunkCOMxði� 1ÞÞ2 +

ðTrunkCOMy ið Þ � TrunkCOMyði� 1ÞÞ2 +

ðTrunkCOMz ið Þ � TrunkCOMzði� 1ÞÞ2

vuuuut ð1Þ

where i = 2,…, k, and k is the length of the time series of Trunk COM.

Hand path efficiency and smoothness. We calculated hand path
efficiency and smoothness using the 3D hand COM trajectory, sepa-
rately during UP and DOWN for individuation tasks and functional
tasks. We selected hand path efficiency and smoothness as metrics to
evaluate movement quality because smooth and straight end-effector
(hand) movement is required to perform ADLs in a skilled and well-
coordinated manner54,55. Additionally, blending of fragmented hand
movementwhile being able tomove thehand in a straight line between
two points in space is an indicator of recovery of upper limb function
after motor impairment56,57.

We quantified the path efficiency by calculating the hand-path-
ratio (HPR) as,

HPR=
Dactual

Dstraight
� 1 ð2Þ
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whereDactual is the distance traveled by the 3D hand COM andDstraight

is the shortest possible distance between movement initiation and
termination. Hence, HPR =0 indicates that the hand traveled in the
most efficient path; values closer to 0 indicate high hand path
efficiency.

We calculated the path smoothness by calculating the spectral arc
length (SPARC)58, which is the negative arc length of the Fourier
magnitude spectrum of the 3D resultant velocity of the hand COM
trajectories. Larger SPARC values indicate higher smoothness. We
calculated HPR and SPARC values separately for UP and DOWN
movements, and during individuation and functional tasks.

We alsocompared all themovement qualitymetrics separately for
the two participant subgroups based on the cause of impairment
(Stroke and ALS) and compared the difference between the two sub-
groups (see Supplementary S11).

Experimental procedure for at-home demonstration
Two participants wore the robot and completed the human-robot
hysteresis calibration (using the IDMmodel trained on the first day of
the study) in their homes. They then performed ADLs (eating from a
bowlwith a spoon, drinking froma cup, andbrushing teeth) using their
own utensils and objects. Participants chose to sit or stand for these
tasks based on their typical routines.

After completing the ADLs with the controller ON and OFF, par-
ticipants performed a timed weight holding task. Wearing a wrist
weight, they attempted to lift their arms to 90° elevation following
flexion and abduction movements under both controller conditions.
The maximum hold time was 2minutes. The post-stroke participant
used a 1.13 kg weight, and the participant with ALS used a 0.23 kg
weight, both self-selected to ensure task feasibility. Afterwards, parti-
cipants performed shoulder-elevated joint individuation tasks with the
controller ON and OFF to simulate prolonged arm use of multiple
joints.

At the end of the experiment, participants repeated the ADLswith
the controller ON and OFF to assess the impact of prolonged use on
robot performance. The ON and OFF conditions were randomized
throughout the experiment. Before each set of ADLs, the therapist
asked the participant to rate their fatigue using the Borg CR−10 scale59.
The FMA-UE and ALSFRS-R were also administered to confirm parti-
cipants’ functional ability had not significantly changed since IDM
training (1 year prior for the participant living with ALS, 6months prior
for the participant post-stroke).

We provide detailed descriptions of the metrics we calculated
from the experiments in Supplementary S11. Unlike the second day in-
lab evaluation, we lacked precisely time-synced motion capture and
video. Although we recorded approximately synced videos, the
absence of exact synchronization made precise timing and accuracy
metrics unreliable. We therefore focused on more coarse metrics of
performance such as average IMU-estimated elevation angle and
actuator pressure during the tasks and duration during timed weight
holding.

Statistical analysis
All the results for upper limb movement quality are presented as
mean± standard error. We evaluated the significant differences in the
upper limbmovement qualitymetrics betweenONandOFF conditions
across all participants, and separately for two participant groups using
either two-tailed, paired t-test or two-tailedWilcoxon-signed rank test.
Additionally, we used paired t-tests to compare the peak compression
force, peak shoulder elevation, and peak actuator pressure between
the baseline and multimodal ML controller to assess the robot’s
transparency during lowering of the arm. Finally, we used either a two-
tailed, independent t-test or two-tailed Mann–Whitney U test to com-
pare the results of upper-limb movement quality change under ON
condition with respect to OFF condition between the two participant

subgroups. An independent t-test and paired t-test were selected if the
values for each of the movement quality metrics were normally dis-
tributed, assessed using the Shapiro–Wilk test. The level of statistical
significance was set at p <0.05. All statistical analysis was performed
using SPSS (Version 29.0)

Data availability
All data supporting the findings of this study are available in the main
text and supplementary materials. The supplementary information
includes the data needed to reproduce all figures and evaluate the
results. Additional details can be requested from the corresponding
author. Source data are provided with this paper.

Code availability
The C++ file with the code for the multimodal ML controller is pro-
vided as supplementary material (Supplementary Code 1). To run the
code, additional libraries for specific wearable robot hardware are
required. Prior work and additional resources have been referenced
but not included in the code as they are not the original contributions
of this work. Additional specifics regarding the controller code can be
provided upon reasonable request to the corresponding author.
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